Diversity of fungi with special reference to the fungus-insect interaction

<u>M.V.Deshpande</u> <u>National Chemical Laboratory</u> <u>Pune</u> <u>mv.deshpande@ncl.res.in</u>

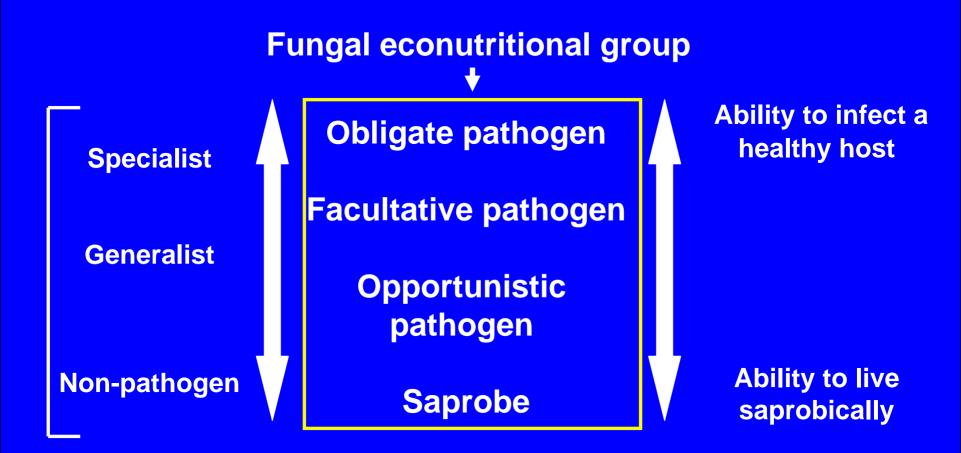
How many species exist on earth?

<u>Group</u>	Known species	Estimated number
Bacteria	4,760	40,000
Fungi*	72,036	15,00,000
Algae	40,000	60,000
Plants	2,67,750	2,95,000
Protozoa	30,800	
Insects	8,00,000	60,00,000
Other arthropods/		
Minor invertebrates	1,32,461	
Molluscs	50,000	-
Reptiles	6,300	
Fish	19,000	21,000
Birds	9,198	
Mammals	4,170	
* Every veer 1500 cpee	ice of functions toxono	mically studied

*Every year 1500 species of fungi are taxonomically studied

Evolution of fungus-insect associations

From contact to stable symbiosis Agonistic - mutualistic relationships

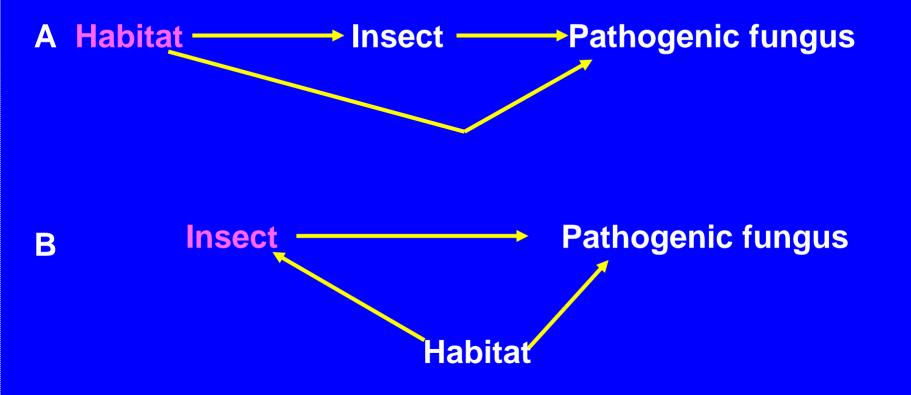

The questions posed?

Are entomopathogenic fungi only entomopathogens?

 Origins and nature of the use of living insects or other invertebrates by fungi Changes and probably future changes in the nature of insect-fungus interaction Are they have common origin or coming from unrelated lines of fungal evolution? Is it just another source of nutrients (protein rich diet) which is easily available? Host jumping from plants-insects- plants or fungi or mammals (??)

Pathogenecity to non-lethal parasitism

Which came first saprophyte or entomopathogen?


Which came first, saprophyte or entomopathogen?

Phylogenetic studies using 18S rRNA and mating (MAT) genes

Entomopathogens (Cordyceps bassiana, Cordyceps brongniartii, Cordyceps militaris, Cordyceps sinclairii, Cordyceps takaomontana, Isaria cateniannulata, Isaria farinosa, Isaria fumosorosea,Isaria javanica, Lecanicillium muscarium and Torrubiella flava) are considered as a phylogenetically defined group, and are closely related to mycopathogens (Lecanicillium psalliotae and Verticillium fungicola)

Entomopathogens (Cordyceps cylindrica, Cordyceps subsessilis, Metarhizium anisopliae and Nomuraea rileyi) and pathogens of plants, nematodes and slime molds are relatively related to each other


Adaptation of proteases and carbohydrases of saprophytic, phytopathogenic and entomopathogenic fungi to the requirements of their ecological niches Cellulase-chitinase- protease change their specificities, temperature and pH optima, mode of action, etc.

Two models to show relative influence of habitat and insect host on the genetic structure of entomopathogenic fungi

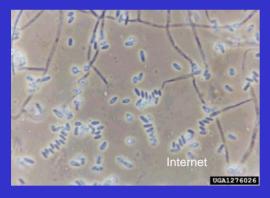
Fungus- fungus and – insect interactions

Dual specificity

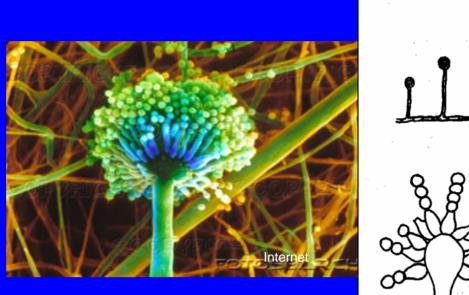
Rhizoctonia Sclerotium

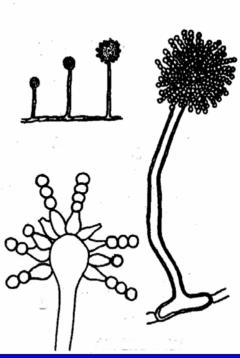
Trichoderma -

Elm bark beetlle



Fungus- insect and –fungus interactions Dual specificity


Mealy bugs, aphids and mites


Verticillium lecanii

Uromyces appendiculatus bean rust, Uromyces dianthi carnation rust, Puccinia recondita f. sp. tritici, wheat leaf rust Puccinia striiformis stripe rust of wheat Phakopsora pachyrhizi soybean rust

Lack of Host Specialization in Aspergillus Less specialized life style

Due to

Broad range of enzymes to attack damaged protective covers sometimes intact covers of plants, animals, insects

Known insect pathogen

Beauveria bassiana Metarhizium anisopliae var. anisopliae Lecanicillium lecanii Paecilomyces farinosus, P. fumosoroseus Tolypocladium inflatum

What is with our neighbourF. tricinctum
Penicillium sDiversity of entomopathogensP. italicum377 fungi from 46 speciesPericoniella r
Pseudeurotiu
Rhizopus ory

Aspergillus flavus A. sydowii Cladosporium cladosporioides Clonostachys rosea f. catenulatum C. rosea f. rosea Fusarium avenaceum F.oxysporum F. redolens F. solani Fusarium sp. Geomyces pannorum Gloeotinia temulenta Lecythophora sp. 2.0 Mariannaea elegans

Mortierella spp. Mucor spp. Penicillium brasilianum P. chrysogenum P. corprophlium P. thomii Pestalotiopsis theae **Secondary colonizer** Absidia glauca Chaetomium globosum Clonostachvs sp. Fusarium equiseti F. sambucinum Penicillium simplicissimum P. italicum Periconiella mucunae Pseudeurotium zonatum Rhizopus oryzae Talaromyces flavus T. trachyspermus Trichoderma aureoviride T. koningii T. parceramosum T. virens Williopsis satumus (yeast) **Unidentified yeast**

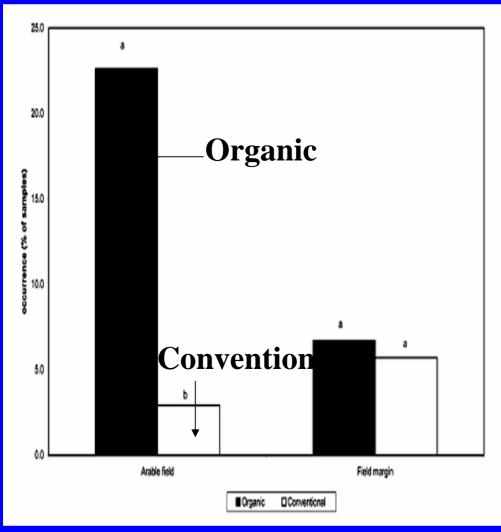
Balsam fir forests infested with spruce budworm

Paecilomyces farinosus Saprophyte or an opportunistic pathogen

 Saprophyte Abundance is proportional to the litter

 Opportunistic pathogen Abundance increases due to spruce budworm

Entomopathogenic fungi A valuable alternative to fight against insect pests



Three groups of insect-pathogenic fungi

- Commonly encountered fungi with dry conidia and lipophylic cell walls- Metarhizium, Beauveria, Nomuraea and Paecilomyces
- Others frequently encountered but have less potential-Verticillium lecanii and Entomophaga grylli
- Saprophytic species- mistaken identity- Aspergillus, Fusarium and Penicillium

Which factors affect the population of insect

pathogenic fungi?

Habitat association in the groups of insectpathogenic fungi

- Farming system
- Field margins
- Bait insects

M. anisopliae O (5.5%); *C* (2.9%)

B.bassiana O (3.3%); C (0%)

Identification of potential strains

Habitat selection (Soil,

temperature, crop, agriculture practices- irrigation, pesticides, forest density, etc)

and not Insect-host selection

drives the population structure

Different methods for the isolation of potential entomopathogens

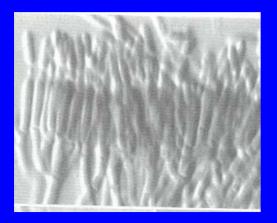
Soil dilution method

Galleria bait method

CDE activities (Chitin medium)

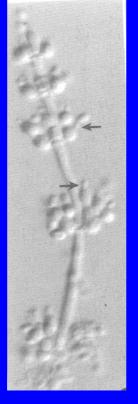
Nomuraea rileyi from the dead *Spodoptera* larvae

Where do we find entomopathogens?

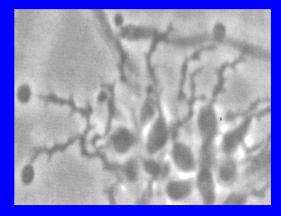

Dead insects

- Insects hanging from plants, under trees and bushes on soil
- Body is soft and black- bacterial or viral infection
- Body is hard- fungal infection

Live insects

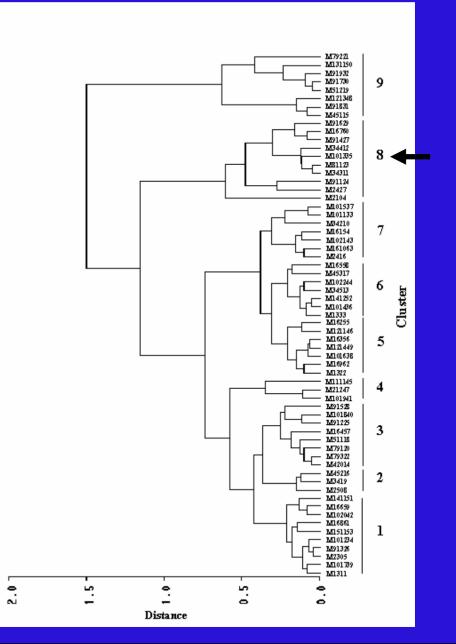

- Collect and keep them in the cages and feed them
- •Abnormal Behaviour not feeding, poor coordination,
- •Jerky movements, excessive grooming and loss of orientation

ENTOMOPATHOGENIC FUNGI ON H. ARMIGERA


M.anisopliae

N.rileyi

B. bassiana

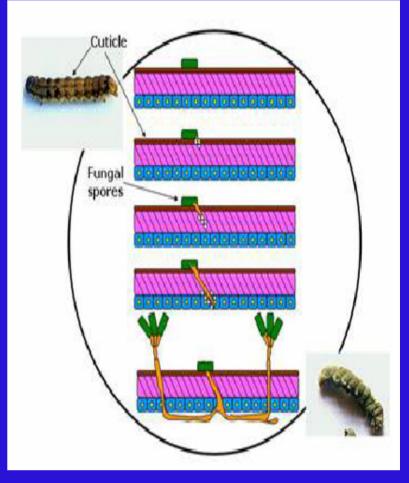


Origin of <i>Metarhizium</i> isolates		
Isolate	Field/Source T	otal isolates
Source: Soil		
M1311, M1322, M1333, M2104, M2305, M241	6, Tomato	15
M2427, M2508, M42014, M45115, M45216,		
M45317, M79120, M79221, M79322		
M3419, M34210, M34311, M34412, M34513	Custard apple	5
M81123, M91124, M91225, M91326, M91528,	Sugarcane	11
M91427, M91629, M91730, M91831, M91932,	M111145	
M101133, M101234, M101335, M101436, M10	1537, Brinjal	12
M101638, M101739, M101840, M101941, M10	2042,	
M102143, M102244		
M51118, M51219	Okra	2
M131150, M141151, M141252, M151153	Pigeon pea	4
M121146, M121247, M121348, M121449	Chickpea	4
Source: Insect hosts		
M16255, M16356, M16457, M16558, M16659	Pigeon pea-Greasy cutwor	m 5
M16154, M16760	Sugarcane-Mealybug	2
M16861	Sugarcane-White gru	b 1
M16962	Sugarcane-Beetle	1
M161063	Sugarcane-Pyrilla perpussil	a 1

Soil isolates is based on crop, geographical location, plot, sub-plot if any, sample and isolate number Insect isolates is based on crop, geographical location, host and isolate number

Parameters to study potential entomopathogens

- Extracellular production of CDE: chitinase, CDA, chitosanase, protease and lipase activities
- Regression analysis demonstrated the relation of CDE activities with *H. armigera* mortality
- Based on LT50 of the 10 isolates towards *H. armigera* five isolates were selected Cluster 8
- All the 3 isolates, M34412, M34311 and M81123 showed comparable RAPD patterns with a 935G primer



Adaptation...evolution(!) of M. anisopliae

Protease-lipase –chitinase act sequentially in fungus-insect interaction

Chitin deacetylase- chitosanase complex for chitin degradation in some *Metarhizium* isolates

Constitutive CDA modifies cell wall chitin to chitosan for selfdefense against insect chitinase

What is the use of molecular characterization of entomopathogens?

Identity of the potential strain [persistence after application, horizontal spread] **Diversity** [Geographical location, soil condition, **crops**] **Relatedness of entomopathogens** [Interspecies and intergeneric]

Markers to study diversity

- Host recognition
- Cell surface lectins and carbohydrates
- Enzymes/ toxins involved in killing process
- Isoenzymes
- **DNA-based**
- RFLP (Restriction Fragment Length Polymorphism)
- RAPD (Random Amplified Polymorphic DNA)
- AFLP (Amplified Fragment Length Polymorphism)
- Microsatellite (Variable Nucleotide Tandem Repeat)
- SSCP (Single Strand Conformation Polymorphism)
- SNP (Single Nucleotide Polymorphism)

Microsatellite DNA analysis for *M. anisopliae* at 6 different loci

lsolate					Micr Ioci	osatellite			
	CA				GAA				Field
M. anisopliae	Е		J	M		325	307	Area	Crop
M2305	157	117	95	95	130		150	Saswad	Tomato
M3419	157	117	95	95	130		150	Saswad	Custardapple
M2104	180	106	74	109	164		159	Saswad	Tomato
M34210	180	106	74	109	164		159	Saswad	Custardapple
M34311	172	111	72	107	166		159	Saswad	Custardapple
M45317	172	111	72	107	166		159	Lonikand	Tomato
M51219	172	111	72	107	166		159	Lonikand	Bhendi/Okra
M1322	172	111	74	109	164		159	Saswad	Tomato
M79322	172	111	74	109	164		159	Lonikand	Tomato
M34412	168	111	121	124	170		147	Saswad	Custardapple
2071	168	111	121	124	170		147	Re-isolate, 2002	
2065	168	124	111	121	147		170	Re-isolate,2002	
2133	168	111	121	124	170		147	Isolated after one year (2003)	
2191	168	111	121	124	170		147	%efficalcy,CP,I sp.,Day0/2003	
2192	168	111	121	124	170		147	%efficacy,PP,Lsp.,Day0/2003	
2194	168	111	121	124	170		147	%efficacy.PP.I sp.,Dav0/2003	

The isolates re-isolated from infected *H. armigera* and from the soil samples collected after spraying resemble the original isolate.

Microsatellite variability in the entomopathogenic fungus Paecilomyces fumosoroseus

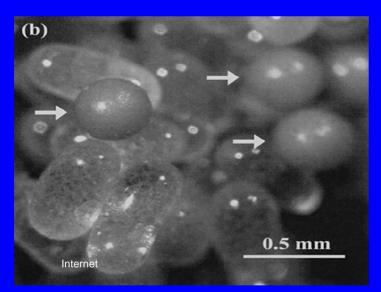
Host and geogrophical location influenced diversity One lineage included genotypes from the B-biotype of *Bemisia tabaci* distributed across the America Another lineage was distributed across Asia and consisted of four distinct clusters

Mutualism

Woodwasps (Hymenoptera) attack conifers and angiosperms

Basidiomycetes *Amylostereum* and *Stereum* degrade host tissue to the assimilable form

Female larvae store arthrospores which germinate and grow.



Evolutionary success of bark beetles is dependent on the symbiotic relationship with fungus *Ophiostoma novo-ulmi* •Helpful in overcoming plant resistance •Nutrition to the larvae •To make host susceptible for the attack •To modify chemicals produced by plants

<u>Mutualism</u>

Egg piles in the nursery nest of *R. flavipes*

Termite egg-mimicking fungi ("termite balls") in *Reticulitermes* spp. (Isoptera: Rhinotermitidae) nests

•*Fibularhizoctonia* sp. forms sclerotia that morphologically ind chemically mimic termite eggs

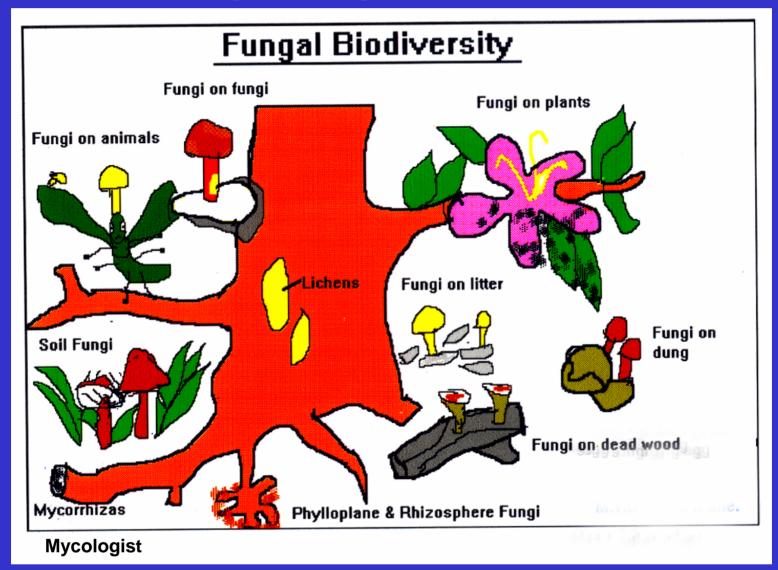
•Fungus gets protection and free transport by termites to a new habitat

•Sclerotia enhance egg survival by probably producing antimicrobial compounds against pathogens.

Transparent eggs and spherical-shaped against pathogens.

Insect pathogenic fungi: The Rare and the Valuable

Common fungi, *Beauveria bassiana* and *Metarhizium anisopliae* are <u>Valuable</u> because they are easy to grow and have a wide host range


M. anisopliae is the world's second most commonly encountered and second most widely used insect fungus.

<u>Rare</u>, *Neozygites tanajoae*, a significant pathogen of cassava green mites in South America. Cassava is a staple crop for poor farmers there—and in Africa—who cannot afford to apply pesticides against the mite Need for the entomopathogenic fungi park

Repeated sub-culturing on artificial media affects •Conidia formation •Conidial germination •Virulence

Maintenance in the natural habitat

.....Just a Beginning

.....and not the end